The ATLAS Radiation Dose Measurement System

Jochen Hartert

Graduiertenkolleg Seminar
Freiburg, 15 October 2008
The ATLAS Experiment

Proton-proton collisions at $\sqrt{s} = 14$ TeV and $\mathcal{L} = 10^{34}\text{cm}^{-2}\text{s}^{-1}$
Motivation and Measured Quantities

Why care about radiation dose levels?

- Irradiation changes the performance of detectors and electronics!

Measured quantities:

1. **Total Ionizing Dose (TID)**
 - Mainly due to photons, electrons and positrons
 - Measured in Gray (Gy), \(1 \text{ Gy} = 1 \text{ J/kg} \)
 - Problem to MOS and bipolar devices

2. **Non Ionizing Energy Loss (NIEL) / equivalent fluence (\(\Phi_{eq} \))**
 - Hadrons cause displacement damage in silicon
 - Expressed in 1 MeV neutron equivalent fluence \((n/\text{cm}^2) \)
 - \(\Phi_{eq} = \kappa \Phi = \int \frac{D(E)\phi(E)\,dE}{D(E_n=1 \text{ MeV})} \)

3. **Thermal neutron fluence**
Radiation Field in ATLAS

- Exposure of electronics to:
 - radiation from pp-collisions (mainly pions)
 - neutrons from interactions of hadrons with detector material

- After 10 years of LHC operation electronics irradiated up to:
 - Total Ionizing Dose: TID > 100 kGy
 - Non Ionizing Energy Loss $\Phi_{eq} > 10^{15}$ 1 MeVn/cm$^{-2}$

- Monitoring of radiation levels needed in order to:
 - cross check simulations
 - understand change in detector performance
 - and as independent measurement

Non Ionising Energy Loss in the ATLAS Inner Detector

FLUKA simulation by Ian Dawson
Radiation Field at SLHC

- Luminosity: $\mathcal{L}(\text{SLHC}) \approx 10 \times \mathcal{L}(\text{LHC})$
- Ionizing dose scales with luminosity: $\text{TID}(\text{SLHC}) \approx 10 \times \text{TID}(\text{LHC})$
- Upgrade of ATLAS tracker to full silicon → loss of moderating effect of the Transition Radiation Tracker → NIEL not expected to scale with luminosity → as compensation introduce a 5 cm thick moderator
Total Ionizing Dose (TID) Measurement - RadFETs

- **RadFET**: Radiation Field Effect Transistor
- Electrons escape, holes are trapped in SiO$_2$-Si boundary.
- Higher negative gate voltage needed to open transistor.
- Measure gate voltage increase at given drain current. $\Delta V = a \times (TID)^b$
- Sensitivity depends on oxide thickness
- Three RadFETs used in ATLAS to cover large range of doses:
 - 0.01 Gy to 10 Gy: 1.6 μm from CNRS LAAS, Toulouse, France
 - up to 10^4 Gy: 0.25 μm from REM, Oxford, UK
 - up to 10^5 Gy: 0.13 μm from REM, Oxford, UK
Response curves of RadFETs in use

1.6 µm LAAS RadFET
0.01 Gy to 10 Gy

0.25 µm REM RadFET
up to 10^4 Gy
Non Ionising Energy Loss (NIEL) Measurement (1)

First Method: Bulk damage in forward biased p-i-n diode

- NIEL causes bulk damage in silicon
- ⇒ reduced minority carrier lifetime in a p-i-n diode
- ⇒ increase of resistance
- ⇒ measure voltage change at given forward current

\[\Phi_{eq} = k \times (V - V_0) \]

p-i-n diodes used in ATLAS:
1. \(10^8\) to \(10^{12}\) n/cm\(^2\): CMRP from University of Wollongong, Australia
2. \(10^{12}\) to \(10^{15}\) n/cm\(^2\): OSRAM BPW34 Silicon PIN photodiode
Response curves of p-i-n diodes in use

CMRP p-i-n diode
10^8 to 10^{12} n/cm2

BPW34 p-i-n diode
up to 10^{15} n/cm2

The BPW34 diodes that are used in ATLAS were pre-irradiated with
3×10^{12} n/cm2
Second Method: Bulk damage in silicon
→ Increase of leakage current \((I_{\text{leakage}}) \) in reverse biased diode:
\[
\Phi_{\text{eq}} = \frac{I_{\text{leakage}}}{(\alpha V)} \quad (V: \text{sensitive (depleted) Volume})
\]
- \(10^{11} \) to \(10^{15} \) n/cm\(^2\) higher fluences with higher voltage
- Pad diode with guard ring structure on epitaxial silicon
- 25 \(\mu \)m thin \(\rightarrow \) fully depleted at voltages \(< 30 \) V also after irradiation
DMILL transistors are used in readout electronics in parts of the Inner Detector (SCT).

Base current at fixed collector current sensitive to fast and thermal neutrons:

\[
\frac{\Delta I_b}{I_c} = k_{eq} \Phi_{eq} + k_{th} \Phi_{th}
\]

\(k_{eq}\) and \(k_{th}\) known
\(\Phi_{eq}\) measured with diodes
→ determine \(\Phi_{th}\)
Radiation Monitoring Sensor Boards

- **Inner Detector:** 14 Modules that contain:
 - 3 RadFETs for different dose ranges
 - 2 PIN diodes for low and high fluences
 - 1 Epitaxial (large fluence range)
 - 2 DMILL bipolar transistors
 - NTC temperature sensor
 - Resistive pad for heating on the back side

- **Outside the Inner Detector region:** 48 modules
 - 1 high sensitivity PIN diode (CMRP)
 - 1 RadFET
 - NTC temperature sensor
Readout

- Usage of standard ATLAS components for straightforward integration:
 - ELMB: 64 adc channels, CAN bus communication
 - ELMB-DAC: current source, 16 channels
- Sensors are only biased during readout
- PVSS based detector control system (DCS)
- Integration in ATLAS DCS and data base archiving
Readout and Online Monitoring

Jochen Hartert

The ATLAS Radiation Dose Measurement System
Tests in Mixed Radiation Environment at CERN PS

- Mixed high energy particles in IRRAD6 environment at CERN PS.
- Two modules (Inner Detector style) are irradiated since mid May.
- Test of readout setup/procedure and calibration constants.

F. Ravotti, M. Glaser et. al
PIN diodes in Mixed Radiation Environment

- Secondary Emission Counter (SEC) counts number of protons
 - conversion factors to TID and NIEL from previous measurements
 - not useful for very small doses (unstable beam conditions)
- CMRP PIN diode also sensitive to low fluences (10^9 1 MeV neq/cm2).
- Good agreement between PIN diodes (20% uncertainty).
Tests in Mixed Radiation Field

RadFETs in Mixed Radiation Environment

- High sensitivity RadFET (LAAS 1.6 μm)
- Medium sensitivity RadFET (REM 0.25 μm)

LAAS RadFET sensitive already at doses 10^{-2} Gy

But: reduced response of LAAS in proton rich environment
→ recalibration for this special case
DMILL Transistors in Mixed Radiation Environment

\[\beta = \frac{\text{collector current}}{\text{base current}} \]

Directly measure degradation of DMILL transistor performance.

Determine neutron fluence (using \(\Phi_{eq} \) from PIN diode as input).

Improvement of the readout timing to avoid “noise”
ATLAS Baseline Measurements

Tests in Mixed Radiation Field

The ATLAS Radiation Dose Measurement System

Jochen Hartert

CMRP Pin

RADFET

CMRP p-i-n diode
Radiation monitoring important
- to cross check simulations
- determine the correlation between dose levels and luminosity
- monitor electronics performance changes - particularly in the inner detector

The system in ATLAS allows online monitoring of radiation levels:
- TID in SiO$_2$ from cGy up to 100 kGy
- NIEL in Si from 10^8 neq/cm$^{-2}$ up to 10^{15} neq/cm$^{-2}$
- thermal neutron fluence and degradation of DMILL bipolar transistors

Integration in ATLAS Detector Control System

Test and optimization in mixed radiation field at low dose rates
Backup