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General implications of the Higgs discovery
The Higgs solves the most crucial problem in particle physic s:

how to generate particle masses in an SU(2) � U(1) gauge invariant way?

in the Standard Model ) the Higgs–Englert–Brout mechanism

Introduce a doublet of scalar �elds � =( � +

� 0 ) with h0j� 0 j0i 6= 0:

�elds/interactions symmetric under SU(2) � U(1) but vaccum not.

L S = D � � yD � � � � 2 � y� � � (� y� )2

v = ( � � 2=� )1=2 = 246 GeV
) three d.o.f. for M W � and M Z .

For fermion masses, use same � :

L Yuk =� fe(�e ; �� )L �e R + :::
Residual d.o.f corresponds to spin–0 H particle.

� The scalar Higgs boson: JPC = 0++ quantum numbers (CP–even).

� Mass: M 2
H = 2� v2 only free parameter; should be <� O(v)

� Higgs couplings / particle masses: gH� = m f =v; gHVV = 2M 2
V =v

� Higgs self–couplings from V : gH 3 = 3M 2
H =v; :::

Since v is known, the only free parameter in the SM is M H (or � ).
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General implications of the Higgs discovery
Pré–LHC constraints on the SM Higgs sectior and on the Higgs mas s:

� Experimental constraints:

– indirect from global �t of EW precision data:

M H = 92+ 34
� 26 GeV ) M H <� 160 GeV@95% CL

– Direct searches at LEP and the Tevatron:

M H > 114 GeV@95%CL and 6= 160� 175 GeV

� Constraints from unitarity at high energies:

without Higgs: jA 0(vv ! vv )j / E2=v2

including H with couplings as predicted:

jA 0 j / M 2
H =v2 ) the theory is unitary but needs M H <� 700 GeV...

� Constraints from triviality and stability@high scale:

coupling � = 2M 2
H =v evolves with energy

– M H too large: coupling non perturbative

– M H too small: stability of the EW vaccum

� C � 1 TeV ) 70<� M H <� 700 GeV
� C � M Pl ) 130<� M H <� 180 GeV
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General implications of the Higgs discovery
The SM was only one (but simplest) possibility for the realis ation of EWSB...

..but a large number of possibilities for BSM Higgs sectors w ere advocated..

Which scenario is chosen by Nature? The LHC gave a �rst answer !
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General implications of the Higgs discovery

... 4th of July 2012: a Higgstorical day...
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General implications of the Higgs discovery

We have observed a Higgs particle

with a mass in the expected range:

M H = 92+ 34
� 26 GeV was expected

M h � 125 GeV is measured

(no twin peaks anymore... yes?).

Production rates compatible with

with those expected in the SM:

�t of all the LHC Higgs data )
agreement at the 20–30% level:

� ATLAS
tot = 1:30� 0:30

� CMS
tot = 0:87 � 0:23

combined: � lHC
tot ' 1.

No other new particle observed:

– no other Higgs particle seen,
– no SUSY, KK, etc... new state...

looks like standardissimo, no?
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General implications of the Higgs discovery
Maybe we have the theory of everything?

� renormalisable, unitary, perturbative, ...
� extrapolable to the hightest possible scale
(EW vacuum (meta)stable up to Planck scale).
� Very successful in describing present data
(with all problems disappearing one by one).

It requires some extensions though...

� dark matter: maybe Peccei-Quinn axion?
� neutrino masses, baryon asymmetry, ....
� gauge coupling uni�cation problem:

�xed in SO(10) with M inter � 1011 GeV ?
Remains only the “mother of all problems”:

hierarchy problem calls for beyond the SM.
Three most discussed beyond SM scenarii:

173:2 � 0:9 GeV
171:2 � 3:1 GeVmpole

t =

M H = 125:6� 0:4 GeV
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P ?

� spin–zero Higgs � bound-state ) Technicolor: in “mortuary”?

� cut–off at TeV scale ) extra space-time dimensions: in “hospital”?

� new protecting symmetry ) Supersymmetry: in “trouble”?

Here, I discuss the example of Supersymmetry and stick to the MSSM.
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1. The Higgs sector of the MSSM
In the MSSM we need two Higgs doublets H 1 =

�
H 0

1

H �
1

�
and H 2 =

�
H +

2
H 0

2

�
,

to generate up/down-type fermion masses while having chira l anomalies.

after EWSB, three dof for W �
L ; ZL ) 5 physical states: h; H ; A ; H � .

Only two free parameters at tree-level to describe the syste m tan �; M A :

M 2
h ;H = 1

2

�
M 2

A + M 2
Z � [(M 2

A + M 2
Z )2 � 4M 2

A M 2
Z cos2 2� ]1=2

	

M 2
H � = M 2

A + M 2
W

tan2 � = � (M 2
A + M 2

Z ) sin 2�
(M 2

Z � M 2
A ) cos2� = tan2 � M 2

A + M 2
Z

M 2
A � M 2

Z
(� �

2 � � � 0)

M h <� M Z jcos2� j+ RC <� 130 GeV ; M H � M A � M H � <� M EWSB :
� Couplings of h; H to VV are suppressed; no AVV couplings (CP).

� For tan � � 1: couplings to b (t) quarks enhanced (suppressed).
� g� � uu g� �dd g� V V

h cos�
sin � ! 1 sin �

cos� ! 1 sin(� � � )! 1
H sin �

sin � ! 1=tan � cos�
cos� ! tan � cos(� � � )! 0

A 1=tan � tan � 0
In decoupling limit: MSSM Higgs sector reduces to SM with a li ght h .
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1. The Higgs sector of the MSSM

Life is more complicated and radiative corrections have to b e included.

The CP-even Higgses described by 2� 2 matrix including corrections:

M 2
S = M 2

Z

0

@ c2
� � s� c�

� s� c� s2
�

1

A+ M 2
A

0

@ s2
� � s� c�

� s� c� c2
�

1

A+

0

@� M 2
11 � M 2

12

� M 2
12 � M 2

22

1

A

and the two Higgs masses and the mixing angle � are given by:

M 2
h=H = 1

2

�
M 2

A + M 2
Z + C+ �

p
M 4

A + M 4
Z � 2M 2

A M 2
Z c4� + C

�

� = 2� M 2
12 � (M 2

A + M 2
Z )s�

C � +( M 2
Z � M 2

A )c2 � +
p

M 4
A + M 4

Z � 2M 2
A M 2

Z c4 � + C

with C � = � M 2
11 � � M 2

22

C = 4� M 4
12 + C2

� � 2(M 2
A � M 2

Z )C � c2� � 4(M 2
A + M 2

Z )� M 2
12 s2�

The dominant corrections come from stop/top sector with a le ading term:

� M 2
11=12 � 0 ; � M 2

22 � � = 3 �m 4
t

2� 2 v 2 sin2 �

h
log M 2

S
�m 2

t
+ X 2

t
M 2

S

�
1 � X 2

t
12 M 2

S

�i

still a simple picture but with a few additional parameters M S; X t ...
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2. Implications from the Higgs mass
The mass value 125 GeV is rather large for the MSSM h boson,

) one needs from the very beginning to almost maximize it...

Maximizing M h is maximizing the radiative corrections; at 1-loop:

M 2
h

M A � M Z! M 2
Z cos22� + 3 �m 4

t
2� 2 v 2 sin2 �

�
log M 2

S
�m 2

t
+ X 2

t
M 2

S

�
1 � X 2

t
12M 2

S

��

� decoupling regime with M A �O (TeV);
� large values of tan � >� 10 to maximize tree-level value;
� maximal mixing scenario: X t = A t � � cot � =

p
6M S;

� heavy stops, i.e. large M S = p m~t 1
m~t 2

.

We choose at maximum M S <� 3 TeV, not to have too much �ne-tuning....

� Do the complete job: two-loop corrections and full SUSY spec trum.

� Use RGE code (Suspect) with RC in DR /compare with FeynHiggs (OS).

Perform a full scan of phenomenological MSSM with 22 free par ameters:

� determine regions of parameter space where 123 � M h � 129 GeV

(3 GeV uncertainty includes both “experimental” and “theor etical” error);

� require h to be SM–like: � (h) � BR (h) � H SM (H = H SM ) later).

Many anlayses! Here, the one from Arbey et al. 1112.3028+120 7.1348.
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2. Implications from the Higgs mass
Main results:

� Large M S values needed:

– M S � 1 TeV: only maximal mixing,

– M S � 3 TeV: only typical mixing.

� Large tan � values are favored,

but tan � � 3 possible if M S � 3TeV.

How light sparticles can be with

the constraint M h = 125 GeV?

� 1s/2s gen. ~q should be heavy...

But not main player here: the stops:

) m~t 1
<� 500 GeV still possible

(and compatible with direct limits).

� M 1 ; M 2 and � unconstrained,

� non-univ. m~f : decouple ~̀from ~q:
EW sparticles can be still very light

but watch out the new LHC limits..
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2. Implications from the Higgs mass
Constrained MSSMs are interesting from model building poin t of view:

– concrete schemes: SSB occurs in hidden sector
gravity ;::

�! MSSM �elds,
– provide solutions to many problems in general MSSM: CP, �av or, CCB,..
– parameters obey boundary conditions ) small number of basic inputs.

� mSUGRA: tan � ; m1=2 ; m0 ; A 0 ; sign(� )
� GMSB: tan � ; sign(� ) ; M mes ; � SSB ; N mess �elds

� AMSB: , m0 ; m3=2 ; tan � ; sign(� )
full scans of the model parameters with 123 GeV � M h � 129 GeV :

very strong constraints and some (minimal) models already r uled out...
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2. Implications from the Higgs mass

As the scale M S seems to be large, consider two extreme possibilities.

� Split SUSY: allow �ne–tuning:

scalars (including H 2) at high scale

gauginos–higgsinos at weak scale

(uni�cation+DM solutions still OK).

M h / log(M S=m t ) ) larger.

� SUSY broken at the GUT scale:

give up �ne-tuning and everything else

still, � / M 2
H related to gauge cplgs

� ( ~m)= g2
1 ( ~m )+ g2

2 ( ~m )
8 (1 + � ~m )

... leading to M H =120–140 GeV ...

In both cases small tan � are needed.

note 1: tan � � 1 still possible,

note 2: M S large but not M A possible!?

Consider general MSSM with tan � � 1!
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3. Implications from the Higgs properties
In principle, once the angles � and � known, all h couplings are �xed:

MSSM: c0
V = sin(� � � ) ; c0

t = cos�= sin� ; c0
b = � sin�= cos�

if only radiative corrections to masses M h=H and � taken into account.

However also direct/vertex corrections have to be included ! ) Figure

The two important SUSY (QCD) corrections affect the t,b coup lings:

cb � c0
b � [1 � � b

1+ � b
� (1 + cot � cot � )] with tan �

M A � M Z! � 1
tan �

ct � c0
t � [1+ m 2

t
4m 2

~t 1
m 2

~t 2

(m2
~t 1

+ m2
~t 2

� (A t � � cot � )(A t + � tan � ))]

� c� ; cc and ct from pp ! Ht �t do not involve same vertex corrections.

� gg ! h process has ~t ; ~b loops and h ! 

 has also ~� and � �
i loops.

In general case, we need (at least) 7 couplings cg ; c
 ; ct ; cb ; cc; c� ; cV .
(not to mention the invisible Higgs decay width that enters a ll BRs...)

8 parameters �t dif�cult! Simpler to make reasonable approx imations:

� low sensitivity on h ! c�c , h ! � � and pp ! ttH at the LHC....

� in h ! 

 additional ~b; ~� ; � �
1 contributions smaller than those of ~t .

) assume cc = ct ; c� = cb and ct (ttH ) = ct (ggF); c
 � cg � ct :

reduce the problem to a �t of three couplings: cV ; cb ; ct .
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3. Implications from the Higgs properties

Adapt the SM Higgs rates to that of h close to the decoupling li mit...
Main Higgs production channels:

q
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V �

V

�
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q
q
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gluon{gluon fusion

�

g
g

H

Q

�

Q
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�

Q

ppp ! t�tH

q�q ! Z H
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qq ! qqH
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proceeds via heavy quark loops!

Higg decays branching ratios:
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– h ! b�b � 60%: dominant

– h ! cc; � �; gg= O(few %)
– h ! 

; ZZ � ! 4` � / 10� 3

main points besides �; � )
change in h ! b�b drastic,

more loops in h ! gg; 

 ...
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3. Implications from the Higgs properties
) general MSSM at LHC is described by M h and cV ; ct ; cb .

3-dimensional �t in [ct ; cb ; cV ] space: AD, Maiani,Polosa,Quevillon,Riquer

– ATLAS+CMS 2013 data for signal strengths in all channels;

– consider the ( � 15–20%) theory uncertainty as a bias not nuisance;

– use ratios of signal strengths where theory uncertainty ca ncels out.

1� 3–dimension �t 3 � 3–dimension �t
(3 regions for central and two extreme choices of the theory p rediction).

Best-�t value: ct = 0:894; cb = 1:007; cV = 1:02 with � 2 =64.80 (71).
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3. Implications from the Higgs properties

Now back to MSSM relations and make a 2–dimensional �t for sim plicity

(the assumption is that there is no direct correction and one ci is �xed).

(ct = 0:9; cV = 1:0), (cb = 0:97; cV = 1:0), (ct = 0:89; cb = 0:97).

are now the best-�t points; combining the three possible cas es, one has:

tan � = 1 and M A = 560 GeV

which, with M h = 125 GeV implies M H = 580 GeV, M H � = 563 GeV.

But the minimum is �at and many points (with high tan � ) are also OK...
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3. Implications from the Higgs properties

Signal strengths and ratios �t turned in a [tan �; M A ] constraint...

AD,
Maiani,
Moreau,
Polosa,
Quevillon,
Riquer.
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4. Implications from heavy Higgs searches
Besides superparticles, the heavier H/A/H � states can also be produced.

SM production mechanisms What is different in MSSM

q

�q

V

�

�

H

V

Higgs{strahlung

�

q
q

V �

V

�

H

q
q

Vector b oson fusion

�

g
g

H

Q

gluon{gluon fusion

�

g
g

H

Q

�

Q

in asso ciated with Q

�

Q

� All work for CP–even h,H bosons.
– in �V , qq� h/H complementary
– additional mechanism: qq ! A+h/H

� For gg ! � andpp ! QQ�
– include the contr. of b–quarks
– dominant contr. at high tan � !

� For pseudoscalar A boson:
– CP: no �A and qqA processes
– gg ! A and pp ! bbA dominant.

� For charged Higgs boson:
– M H <� m t : pp ! t �t with t ! H + b
– M H >� m t : continuum pp ! t �bH �

At high tan � values :
– h as in SM with M h = 115� 130GeV
– dominant channel: gg; b�b ! � ! � �
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4. Implications from heavy Higgs searches
MSSM Higgs detection modes:

General features for h/H/A/H �

� h: same as H SM in general

(especially in decoupling limit).

� A : only b�b; � + � � , t �t decays

(no VV decays, hZ suppressed).

� H : same as A in general as

WW ; ZZ ; hh modes suppressed.

� H � : � � and tb decays

(depending if M H � < or > m t ).

– loop decays strongly suppressed

– possible new effects from SUSY!?

g tan � = 30

g tan � = 3

W W

W W

� �

� �

bb bb
M

h

BR( h )

13012011090

1
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0.01

hh

W W

Z Z

� �

bb

tt

M

H

BR( H )

500300200

1
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Z h

� �

� �

bb

bb

tt

M
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BR( A )

500300200100

1
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0.01

W h

tb

� �

M

H +

BR( H

+

)

500300200100

1

0.1

0.01

For tan � � 1, only decays intob/ � :

BR: � ! b�b � 90%, � ! � � � 10% .

For tan � � 1, other good channels:

H =A ! tt ; H ! WW ; ZZ
A ! hZ ; H ! hh

Freiburg 25/11/2014 Implications of the Higgs discovery for SUSY – A. Djouadi – p.20/25



4. Implications from heavy Higgs searches
Most ef�cient channels for the production of the heavier MSS M Higgses.

� Searches for the pp ! A =H =(h) ! � � resonant process:

) rules out high tan � for low M A values.

� Searches for charged Higgs in t ! bH + ! b� � decays:

) rules out almost any tan � value for M H � <� 160 GeV.

� Non observation of heavier Higgs bosons in H ! ZZ,WW modes:

) no analysis yet!? The width is different from SM-case.

� Also searches for A ! hZ and H ! hh but not in the MSSM....

� Searches for heavy tt resonances but not in the MSSM ( KK ; Z0)...
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4. Implications from heavy Higgs searches

The most constraining channel is by far the pp ! � + � � process.

However, there are problems with the interpretation in the M SSM context.
� Derived in the “Mh-max scenario” that

maximizes radiative corrections to M h

(but constraints are solid at high–tan � ).

� Uses the M S = 1 TeV benchmark

that is ruled out in most (realistic) cases.

� Uses LEP2 constraint M h >� 114 GeV

which is now superseded by the LHC

(and this rules out all tan � <� 3 values).

� Does not take into account LHC data:

h has 125 GeV and SM–like couplings..

We can be more relaxed: M S � M Z

and choose it in order that LHC data OK:

) more consitent/realistic approach,

) much less model dependance.
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4. Implications from heavy Higgs searches
Model independent – effective – approach

Habemus MSSM (hMSSM):

AD, Maiani,Polosa,Quevillon,Riquer
� We turn M h � M Z j cos2� j+ RC to

RC= 125 GeV - f (M A ; tan � )

ie. we ”trade” RC with the measured M h

MSSM with only 2 inputs at HO: M A ; tan �

M 2
H =

(M 2
A + M 2

Z � M 2
h )( M 2

Z c2
� + M 2

A s2
� )� M 2

A M 2
Z c2

2 �

M 2
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� + M 2
A s2

� � M 2
h

� = � arctan
�

(M 2
Z + M 2

A )c� s�

M 2
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A s2
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p
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Clearly works when leading RC only:

� M 2
22 =

M 2
h (M 2

A +M 2
Z� M 2

h )� M 2
A M 2

Z c2
2 �

M 2
Z c2

� + M 2
A s2

� � M 2
h

But we checked that it is also good

in general, ie for � M 2
11;12 6= 0.
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4. Implications from heavy Higgs searches
LHC run 1 legacy on the MSSM [M A ; tan � ] plane in the hMSSM:

� pp ! H =A ! � �
� t ! H + b ! b� �
(also at low tan � values

� H! WW and ZZ

(but width as in SM).

� CMS A! hZ analysis

� CMS H! hh (to update)

(both MSSM interpreted).

� pp ! H =A ! t �t
with complete analysis:

– effect of total width

– S and B interference

– boosted top jets

the action is at low tan � !

Quevillon in progress
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5. What next?

KEEP GOING!

It is still “action” time:

� keep measuring the Higgs properties: the devil is hidden in t he details...

� keep searching for the heavier Higgses, some can be around th e corner, ...

� keep searching for SUSY with more focus on stops and EW states ..

and keep an open mind towards overlooked and extended scenar ios...

Thank you!
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